Latitudinal trends of Crenarchaeota and Bacteria in the meso- and bathypelagic water masses of the Eastern North Atlantic

Marta M. Varela, Hendrik M. Van Aken, Eva Sintes, Gerhard J. Herndl

The distribution and activity of the bulk picoplankton community and, using microautoradiography combined with catalysed reported deposition fluorescence in situ hybridization (MICRO-CARD-FISH), of the major prokaryotic groups (Bacteria, marine Crenarchaeota Group I and marine Euryarchaeota Group II) were determined in the water masses of the subtropical North Atlantic. The bacterial contribution to total picoplankton abundance was fairly constant, comprising ∼50% of DAPI-stainable cells. Marine Euryarchaeota Group II accounted always for < 5% of DAPI-stainable cells. The percentage of total picoplankton identified as marine Crenarchaeota Group I was ∼5% in subsurface waters (100 m depth) and between 10% and 20% in the oxygen minimum layer (250-500 m) and deep waters [North East Atlantic Deep Water (NEADW) and Lower Deep Water (LDW), 2750-4800 m depth]. Single-cell activity, determined via a quantitative MICRO-CARD-FISH approach and taking only substrate-positive cells into account, ranged from 0.05 to 0.5 amol d-aspartic acid (Asp) cell-1 day -1 and 0.1-2 amol l-Asp cell-1 day-1, slightly decreasing with depth. In contrast, the d-Asp:l-Asp cell-specific uptake ratio increased with depth. By combining data reported previously using the same method as applied here and data reported here, we found a decreasing relative abundance of marine Crenarchaeota Group I throughout the meso- and bathypelagic water column from 65°N to 5°N in the eastern basin of the North Atlantic. Thus, the relative contribution of marine Crenarchaeota Group I to deep-water prokaryotic communities might be more variable than previous studies have suggested. This apparent variability in the contribution of marine Crenarchaeota Group I to total picoplankton abundance might be related to successions and ageing of deep-water masses in the large-scale meridional ocean circulation and possibly, the appearance of crenarchaeotal clusters other than the marine Crenarchaeota Group I in the (sub)tropical North Atlantic.

External organisation(s)
Royal Netherlands Institute for Sea Research
Environmental Microbiology
No. of pages
Publication date
Peer reviewed
Austrian Fields of Science 2012
106021 Marine biology
ASJC Scopus subject areas
Microbiology, Ecology, Evolution, Behavior and Systematics
Sustainable Development Goals
SDG 14 - Life Below Water
Portal url